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Fig. 1: We deploy ResMimic on a Unitree G1 humanoid to demonstrate diverse whole-body loco-manipulation capabilities.
(a) Carrying 4.5kg heavy payloads via whole-body contact; (b, c) expressive motion while carrying box; (d) general humanoid
object interaction beyond manipulation; (e, f) carrying irregularly shaped heavy objects with instance-level generalization.

Abstract— Humanoid whole-body loco-manipulation
promises transformative capabilities for daily service and
warehouse tasks. While recent advances in general motion
tracking (GMT) have enabled humanoids to reproduce
diverse human motions, these policies lack the precision and
object awareness required for loco-manipulation. To this
end, we introduce ResMimic, a two-stage residual learning
framework for precise and expressive humanoid control
from human motion data. First, a GMT policy, trained on
large-scale human-only motion, serves as a task-agnostic
base for generating human-like whole-body movements. An
efficient but precise residual policy is then learned to refine
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the GMT outputs to improve locomotion and incorporate
object interaction. To further facilitate efficient training, we
design (i) a point-cloud–based object tracking reward for
smoother optimization, (ii) a contact reward that encourages
accurate humanoid body–object interactions, and (iii) a
curriculum-based virtual object controller to stabilize early
training. We evaluate ResMimic in both simulation and on
a real Unitree G1 humanoid. Results show substantial gains
in task success, training efficiency, and robustness over strong
baselines. Videos are available at resmimic.github.io.

I. INTRODUCTION

Humanoid robots have been showing promising applica-
tions thanks to their flexibility. Unlike quadrupeds or wheeled
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manipulators, they can perform expressive whole-body loco-
manipulation, combining locomotion and manipulation in
a coordinated, human-like manner. This unique capability
opens the door to transformative applications in daily ser-
vices and industrial operations, while leveraging existing
human-centric infrastructure.

However, realizing precise and expressive humanoid loco-
manipulation remains a fundamental challenge to humanoids.
Compared to locomotion [1], [2] or tabletop manipula-
tion [3], [4], loco-manipulation demands higher precision,
rich whole-body contacts, and data that is not easily accessi-
ble at scale. While direct imitation of human motions [5]
is attractive—since humans naturally perform coordinated
full-body control—retargeting human demonstrations to hu-
manoid robots introduces significant embodiment gap: con-
tact locations and relative object pose in human demonstra-
tions often fail to translate, leading to floating contacts or
penetrations, as shown in Figure 2.

Recent progress on general motion tracking (GMT) poli-
cies [6], [7], trained on large-scale human-only datasets [8],
[9], shows that humanoids can reproduce diverse human mo-
tions with high fidelity. However, these policies are unaware
of manipulated objects. On the other hand, existing humanoid
loco-manipulation approaches rely on highly task-specific
designs, such as stage-wise controllers [10] or handcrafted
data pipelines [11], which limit scalability and generality.
As a result, there is still no unified, efficient, and precise
framework for humanoid loco-manipulation yet.

In parallel, breakthroughs in foundation models [12] have
demonstrated the power of pre-training on large-scale data
followed by post-training. In robotics manipulation, models
like π0 [13] and LBM [14] highlight that this paradigm
resolves data scarcity while improving robustness and gener-
alization. In graphics, pretrained latent spaces are similarly
leveraged for downstream generation and editing [15], [16].
However, in humanoid whole-body control, such a powerful
pretrain–finetune paradigm remains largely unexplored.

In this paper, our key insight is that while diverse hu-
man motions can be effectively mimiced by a pre-trained
GMT policy, object-centric loco-manipulation requires task-
specific corrections. Importantly, many whole-body mo-
tions—such as balance, stepping, or reaching—are shared
across tasks, while only the fine-grained object interac-
tion requires adaptation. This motivates a residual learning
paradigm, where a stable motion prior is augmented with
lightweight task-specific adjustments.

To this end, we propose ResMimic , a two-stage residual
learning framework for humanoid loco-manipulation. First, a
GMT policy is trained on large-scale motion capture data to
reproduce diverse human motions, serving as a robust prior
for human-like whole-body behavior. Second, a task-specific
residual policy is trained efficiently to condition on object
reference trajectory, outputting corrective actions that refine
the GMT policy and enable precise object manipulation.
This decoupling alleviates the need for per-task reward
engineering, improves data efficiency, and yields a general
framework applicable not only to loco-manipulation but also
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Fig. 2: Visualization of imperfect humanoid–object interac-
tion data caused by the embodiment gap during retargeting:
(a) hand–chair penetration; (b) hand–box floating contact.

to locomotion enhancement.
Our contributions are four-fold:

• We propose a two-stage residual learning framework that
combines pre-trained GMT with task-specific corrections,
enabling efficient, precise humanoid loco-manipulation.

• To improve training efficiency and sim-to-real transfer, we
propose (i) a point-cloud–based object tracking reward for
smoother optimization, (ii) a contact reward that explicitly
guides humanoid–object contacts, and (iii) a virtual object
controller that provides a curriculum-based warm start.

• We conduct extensive evaluations in simulation and real
world. Results demonstrate significant improvements in
human motion tracking, object motion tracking, task suc-
cess rate, training efficiency, robustness, and generalization
on challenging loco-manipulation tasks.

• To accelerate research on humanoid loco-manipulation, we
will release our GPU-accelerated simulation infrastructure,
sim-to-sim evaluation prototype, and motion data.

II. RELATED WORK

A. Learning-Based Humanoid Control

Reinforcement learning (RL) enables real-time whole-
body control of humanoids by training directly via interac-
tions with the environment. However, such training typically
suffers from low data efficiency and requires substantial
effort in task-specific reward design [17]. As a result, most
prior work has focused primarily on locomotion [18], [19]
rather than versatile whole-body control, or is limited in spe-
cific task such as getting up [20] and keeping balance [21].

To enable more general control, learning from human mo-
tions has emerged as a promising direction [5]. These meth-
ods typically rely on kinematic retargeting to map human
motions to humanoids, addressing the large embodiment gap.
It enables accurate tracking of individual motions [22]–[24]
or aims for versatile general motion tracking [6], [7], [25],
[26]. While these methods demonstrate whole-body control
ability, they remain limited in their ability to interact with
physical world. VideoMimic [27] makes notable progress by
not only tracking human motion but also reconstructing the
environment, enabling contextual motions such as sitting on a
chair. However, it still interacts only with static environments
and does not extend to dynamic object interactions—an



essential step toward real-world utility. Different from these
works, our work focuses on dynamic loco-manipulation.

B. Humanoid Loco-Manipulation

Humanoid loco-manipulation remains a particularly chal-
lenging learning problem. Recent work has demonstrated
promising results by leveraging teleoperation [6], [28]–[30].
However, these approaches lack explicit object awareness
and require a human operator. Building on teleoperation,
some works train autonomous imitation learning policies
from collected data [4], [31]. Nonetheless, these efforts re-
main restricted to tabletop manipulation with limited whole-
body expressiveness—tasks that could often be achieved
more effectively by dual-arm mobile manipulators. The
most related works to ours are [10], [11]. Dao et al. [10]
propose a modular sim-to-real RL pipeline for box loco-
manipulation, decomposing the task into distinct phases (e.g.,
walking, box-picking) with separate policies for each. Liu
et al. [11] introduce an end-to-end learning pipeline using
reference motions generated by task-specific trajectory opti-
mization. However, all these approaches demonstrate loco-
manipulation with limited whole-body contact (e.g., using
only hands) and expressiveness, as well as rely on highly
task-specific design. In contrast, our method leverages a
GMT policy as prior, enabling more expressive whole-body
loco-manipulation under a unified framework.

C. Residual Learning for Robotics

Residual learning on top of predefined or learned base
models has been widely adopted in robotics. Early works
introduced residual policies to refine hand-designed policies
or model predictive controllers, achieving more precise and
contact-rich manipulation [32], [33]. Building on this idea,
later approaches extended residual learning to policies initial-
ized from demonstrations [34], [35]. In dexterous hand ma-
nipulation, residual policies have been used to adapt human
hand motions for task-oriented control [36], [37]. Notably
in humanoids, ASAP [22] leverages residual learning to
compensate for dynamics mismatch between simulation and
reality, enabling agile whole-body skills. Distinct from these
directions, our method leverages a pre-trained general motion
tracking (GMT) policy as a foundation and learns a residual
policy to enable expressive whole-body loco-manipulation.

III. METHOD

We formulate our whole-body loco-manipulation task as
a goal-conditioned RL problem within a Markov Decision
Process (MDP) M = ⟨S,A, T ,R, γ⟩, where S is the state
space, A the action space, T the transition dynamics, R the
reward function, and γ the discount factor. At time t, the state
st ∈ S includes: (i) robot proprioception srt , (ii) object state
sot , (iii) motion goal state ŝrt , and (iv) object goal state ŝot . The
action at specifies target joint angles, which are executed on
the robot through a PD controller. The reward is defined as
rt = R(st, at), while the training objective is to maximize
the expected cumulative discounted reward: E[

∑T
t=1 γ

t−1rt].

A. Two-Stage Residual Learning

To transfer human–object interaction data into humanoid
whole-body loco-manipulation policies in a task-agnostic
manner, our objective is to avoid task-specific reward en-
gineering, which may benefit individual tasks but limits
generality. Instead, we propose a two-stage residual learning
framework, as shown in Figure 3. Stage I: General Motion
Tracking (GMT). We first train a general human motion
tracking policy πGMT as the backbone controller. Given robot
proprioception srt and reference motion ŝrt , the policy outputs
a coarse action agmt

t = πGMT(s
r
t , ŝ

r
t ), optimized to maximize

the motion tracking reward E
[∑T

t=1 γ
t−1rmt

]
. Stage II:

Residual Refinement. Building on the pretrained GMT
policy, we train an efficient and precise residual policy πRes
per-task that refines the coarse action using both robot and
object information: πRes(s

r
t , s

o
t , ŝ

r
t , ŝ

o
t ) = ∆ares

t . The final
action is computed as at = agmt

t + ∆ares
t , and the residual

policy is optimized to maximize the combined motion and
object rewards E

[∑T
t=1 γ

t−1(rmt + rot )
]
. Both stages are

trained using PPO [38].

B. General Motion Tracking Policy

In this stage, our goal is to train a real-world deploy-
able general motion tracking policy πGMT that takes only
humanoid proprioception srt and human reference motion ŝrt
as input, and outputs actions agmt for the humanoid robot to
mimic the reference motion. While ResMimic is a general
framework that can incorporate any GMT policy as the base
policy, we present one specific implementation as example.

1) Dataset: An important motivation of our two-stage
training pipeline is to decouple human motion tracking from
object interaction. The general motion tracking policy relies
solely on human motion capture data, avoiding the need for
costly and hard-to-obtain manipulation data.

We leverage several publicly available MoCap datasets,
including AMASS [8] and OMOMO [9], which together
contain over 15,000 clips (approximately 42 hours). Motions
that are impractical for our setting, such as stair climbing,
are filtered out. After curating the human motion dataset, we
apply kinematics-based motion retargeting (e.g. GMR [39])
to transfer human motions into a humanoid reference motion
dataset {Ŝr

i = {ŝrt}Tt=1}Di=1.
2) Training Strategy: To train a real-world deployable

general motion tracking policy πGMT, we adopt a single-stage
RL framework in simulation without access to privileged
information. The proprioceptive observation srt is defined as
[θt, ωt, qt, q̇t, a

hist
t ]t−10:t, where θt is the root orientation, ωt

is the root angular velocity, qt ∈ R29 is the joint position, q̇t
is the joint velocity, and ahist

t is the recent action history. The
reference motion input ŝrt is defined as [p̂t, θ̂t, q̂t]t−10:t+10,
where p̂t is the reference root translation, θ̂t is the reference
root orientation, and q̂t is the reference joint position. To im-
prove tracking quality, we also incorporate future reference
motion into the input, enabling the policy to anticipate and
plan for upcoming targets, which yields smoother tracking.
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Fig. 3: Overview of ResMimic : (1) A general motion tracking policy is trained on large-scale human motion data to serve
as base policy. (2) A task-specific residual policy is efficiently trained with virtual force, object and contact reward, to refine
the base policy outputs. (3) During real-world deployment, the combined policy is employed for loco-manipulation control.

3) Reward and Domain Randomization: Following
TWIST [6], the motion tracking reward rmt is formulated as
the sum of three components: (i) task rewards, (ii) penalty
terms, and (iii) regularization terms. To promote robust and
generalizable sim-to-real transfer, we further apply domain
randomization during training. See [6] for more details.

C. Residual Refinement Policy

Building on the pre-trained πGMT, we introduce a residual
policy πRes to refine the coarse actions predicted by the base
policy and thereby complete the desired task.

1) Reference Motions: We obtain reference trajectories
using a MoCap system that simultaneously records hu-
man motion {ĥt}Tt=1 and object motion {ôt}Tt=1. The hu-
man motion is retargeted to the humanoid robot using
GMR [39], yielding humanoid reference trajectories {ŝrt =
GMR(ĥt)}Tt=1. The object motion is directly used as the
reference ŝot . Together, these form the complete reference
trajectory {(ŝrt , ŝot )}Tt=1 for training the residual policy.

2) Training Strategy: We adopt single-stage RL with
PPO for residual learning. The residual policy πRes takes
⟨srt , sot , ŝrt , ŝot ⟩ as input and outputs a residual action
∆ares

t ∈ R29. The object state is represented as sot =
[pot , θ

o
t , v

o
t , ω

o
t ], and the reference object trajectory as ŝot =

[p̂ot , θ̂
o
t , v̂

o
t , ω̂

o
t ]t−10:t+10, where pot denotes the object root

translation, θot the root orientation, vot the root velocity, and
ωo
t the root angular velocity.
Network Initialization. At the start of training, the hu-

manoid already closely mimics the reference human motion,
so the residual policy should ideally output values near zero.
To enforce this, we initialize the final layer of the PPO
actor using Xavier uniform initialization with a small gain

factor (i.e., a scalar that scales the variance of the initialized
weights) so that the initial outputs are close to zero [40].

Virtual Object Force Curriculum. While the two-stage
residual framework performs well on simple tasks with
reliable reference trajectories and light objects, it often fails
early when reference motions are noisy or objects are heavy.
Failures arise mainly from (i) penetration introduced by
kinematic retargeting, which causes the humanoid to push or
knock over the object when naively imitating the reference–
leading the initial policy to retreat rather than engage–and
(ii) instability when handling large object masses.

To address this, inspired by [41], we introduce a virtual
object controller curriculum that stabilizes training by driving
the object toward its reference trajectory. At each timestep,
PD controllers apply virtual forces and torques:

Ft = kp(p̂
o
t − pot )− kdv

o
t , Tt = kp(θ̂

o
t ⊖ θot )− kdω

o
t ,

where Ft and Tt are the control force and torque, and ⊖
denotes the rotation difference. The controller gains (kp, kd)
are gradually decayed, so that early training is stabilized by
strong virtual assistance, while later training forces the policy
to take over and complete the task autonomously.

3) Reward and Early Termination: Decoupling motion
tracking from object interaction brings an additional advan-
tage: we avoid carefully tuning the relative weights between
motion and object rewards. Instead, we directly reuse the
motion reward rmt and domain randomization from GMT
training, and introduce two additional terms: the object track-
ing reward rot , which encourages task completion, and the
contact tracking reward rct , which provides explicit guidance
on body–object contact, improving real-world deployability.
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Fig. 4: We deploy ResMimic on Unitree G1 with MoCap-based object states. (a) Lifting a box from random object initial
poses across 11 trials; (b) Autonomous consecutive kneeling and box lifting; (c) Reactive behavior to external perturbations.

Object Tracking Reward. Prior work [11], [42] typically
measures object tracking using pose differences between the
simulated and reference objects, e.g., rot = exp(−λp∥pot −
p̂ot∥2) + w · exp(−λθ∥θot ⊖ θ̂ot ∥2). Instead, we propose an
alternative with smoother reward landscape: sample N points
from the object mesh surface and compute the point-cloud
difference between the current and reference states,

rot = exp(−λo

N∑
i=1

∥P[i]t − P̂[i]t∥2),

where Pt ∈ RN×3 denotes the sampled 3D points. This
approach naturally accounts for both translation and rotation,
eliminating the need for task-specific weight tuning.

Contact Reward. To encourage correct physical interac-
tions during whole-body manipulation while remaining effi-
cient, we discretize contact locations into meaningful links,
e.g., torso, hip, and arms, excluding feet since they mainly
contact the ground. Oracle contact information is obtained
from the reference human–object interaction trajectory:

ĉt[i] = 1(∥d̂t[i]∥ < σc),

where i indexes the links, 1(·) is the indicator function, and
∥d̂t[i]∥ is the distance between link i and the object surface.
The contact tracking reward is then defined as

rct =
∑
i

ĉt[i] · exp
(
− λ

ft[i]

)
,

where ft[i] is the contact force at link i.
Early Termination. Commonly used in motion tracking,

early termination [5] ends an episode if a body part makes
unintended ground contact or deviates substantially from the
reference, preventing the policy from overvaluing invalid
states. For humanoid whole-body loco-manipulation, we
introduce additional conditions: (i) the object mesh deviates
from its reference beyond a threshold, ∥Pt − P̂t∥2 > σo, or
(ii) any required body–object contact is lost for more than
10 consecutive frames.

TABLE I: Sim-to-Sim evaluation of ResMimic against
baseline approaches in MuJoCo across all four tasks.

Method Task SR ↑ Iter. ↓ Eo ↓ Em ↓ Ej ↓

Base
Policy

Kneel 0% − 0.76 ± 0.01 3.30 ± 0.53 0.28 ± 0.01
Carry 0% − 0.29 ± 0.02 2.47 ± 0.26 1.19 ± 0.30
Squat 40% − 0.19 ± 0.01 0.93 ± 0.07 0.90 ± 0.08
Chair 0% − 1.19 ± 0.48 30.18 ± 33.45 1.20 ± 0.23
Mean 10% − 0.61 9.22 0.89

Train
from

Scratch

Kneel 0% × 0.69 ± 0.00 5.20 ± 0.62 3.41 ± 0.07
Carry 0% 6500 0.70 ± 0.03 5.39 ± 0.38 2.33 ± 0.06
Squat 0% 5000 0.68 ± 0.05 7.56 ± 2.31 4.28 ± 0.70
Chair 0% 2000 0.97 ± 0.08 10.01 ± 1.28 13.36 ± 0.92
Mean 0% 4500 0.76 7.04 5.84

Finetune

Kneel 0% × 0.87 ± 0.01 5.92 ± 0.81 3.02 ± 0.18
Carry 30% 4500 0.33 ± 0.01 2.49 ± 0.18 2.39 ± 0.06
Squat 0% 2000 0.47 ± 0.05 5.07 ± 1.06 2.53 ± 0.13
Chair 0% 700 0.15 ± 0.01 0.28 ± 0.05 1.26 ± 0.09
Mean 7.5% 2400 0.46 3.44 2.30

ResMimic
(Ours)

Kneel 90% 2000 0.14 ± 0.00 0.23 ± 0.06 2.17 ± 0.06
Carry 100% 1000 0.11 ± 0.00 0.08 ± 0.00 1.24 ± 0.03
Squat 80% 1500 0.07 ± 0.01 0.07 ± 0.03 1.18 ± 0.03
Chair 100% 700 0.16 ± 0.01 0.13 ± 0.02 0.55 ± 0.01
Mean 92.5% 1300 0.12 0.13 1.29

IV. EXPERIMENTS

We assess the effectiveness of ResMimic through a
combination of large-scale simulation studies and real-world
deployment on a Unitree G1 humanoid robot (29-DoF, 1.3 m
tall).

The evaluation is designed to investigate both algorithmic
efficiency and deployment robustness. In particular, we focus
on the following research questions:

Q1: Can a general motion tracking (GMT) policy,
without task-specific retraining, accomplish diverse loco-
manipulation tasks?

Q2: Does initializing from a pre-trained GMT policy
improve training efficiency and final performance compared
to training from scratch?

Q3: When adapting GMT policies to loco-manipulation
tasks, is residual learning more effective than fine-tuning?

Q4: Beyond simulation, can ResMimic achieve precise,
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Fig. 5: Comparison between IsaacGym and MuJoCo results for task Chair (left) and Carry (right). Corresponding curves
quantify object tracking error for Train from Scratch, Finetune, and ResMimic.

expressive, and robust control in the real-world?

A. Experiment Setup

1) Tasks: We design four challenging whole-body loco-
manipulation tasks that stress different aspects of humanoid
control and generalization. Task (i) Kneel on one knee and
lift a box — requires expressive, large-amplitude motion and
precise lower-body coordination. (ii) Carry a box onto the
back — demands whole-body expressiveness while maintain-
ing balance under shifting load distribution. (iii) Squat and
lift a box with arms and torso — highlights the challenge
of whole-body contact-rich manipulation. (iv) Lift up a
chair — involves manipulating a heavy, irregularly shaped
object. For clarity, we will refer to these tasks as Kneel,
Carry, Squat, and Chair, respectively. The human–object
interaction reference motions for these tasks are collected
using OptiTrack motion capture system.

2) Evaluation Metrics: We evaluate ResMimic in terms
of training efficiency, motion fidelity, manipulation accuracy,
and overall task completion. The following metrics are used
throughout our experiments: (i) Training Iterations (Iter.):

To eliminate discrepancies due to hardware differences, we
report convergence speed in terms of training iterations rather
than wall-clock time. Here we determine convergence when
reward stops increasing approximately. (ii) Object Tracking
Error: Eo = 1

T

∑T
t=1

∑N
i=1 ||P[i]t− P̂[i]t||2, where Pt and

P̂t denote sampled point clouds on the manipulated object
mesh and its reference at time t. (iii) Motion Tracking
Error: Em = 1

T

∑T
t=1

∑
i ||pt[i] − p̂t[i]||2, where pt[i] and

p̂t[i] are the global positions of link i at time t. (iv) Joint
Tracking Error: Ej = 1

T

∑T
t=1 ||qt − q̂t||2, where qt, q̂t ∈

R29 denote the robot’s joint angles and their reference values.
This evaluates joint-level precision. (v) Task Success Rate
(SR): A rollout is considered successful if Eo is below a
predefined threshold and the robot remains balanced.

3) Baselines: To validate the effectiveness and efficiency
of our pipeline, we compare ResMimic against three rep-
resentative and strong baselines:

(i) Base Policy: The pre-trained GMT policy is directly
deployed to follow human reference motion, without
access to object information.

(ii) Train from Scratch: A single-stage RL policy is trained
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Fig. 6: Real-world qualitative results comparing ResMimic
against all other baselines.

from scratch to track both human motion and object
trajectories, without leveraging the GMT policy. For
fairness, we use the same reward terms as ResMimic
across all tasks, without task-specific tuning.

(iii) Base Policy + Fine-tune: The base GMT policy is fine-
tuned to track both human motion and object trajecto-
ries. The reward terms are identical to those used in
ResMimic . However, due to the limitations of direct
fine-tuning, the policy cannot incorporate explicit object
information as input.

B. Sim-to-Sim Evaluation

All policies are trained in IsaacGym to leverage its mas-
sive parallelism for accelerated data collection. To evaluate
generalization, however, we perform sim-to-sim transfer into
MuJoCo, which is widely regarded as a better proxy for
real-world physics and thus a closer benchmark for sim-
to-real performance. We report quantitative results for all
baselines across the four loco-manipulation tasks in Table I,
and highlight key takeaways below.

(Q1) GMT alone cannot complete loco-manipulation
tasks, but provides a strong initialization. We first compare
ResMimic against directly deploying the pre-trained GMT
policy. As shown in Table I, the base GMT policy achieves
only a 10% success rate, compared to 92.5% for ResMimic.
Although GMT alone yields slightly lower joint tracking
error (due to its training objective), it performs poorly on
object tracking and overall task completion, as it lacks access
to object information. This indicates that while GMT cap-
tures joint-level precision, it is insufficient for manipulation
without adaptation.

(Q2) Using GMT as base policy significantly improves
training efficiency and effectiveness. Next, we compare
ResMimic with policies trained entirely from scratch under
identical settings (reward function, domain randomization,
etc.). As shown in Table I, training from scratch fails to solve
the tasks in MuJoCo and converges much more slowly. A
side-by-side comparison between IsaacGym and MuJoCo as
shown in Figure 5 reveals that trained-from-scratch policies
sometimes show partial success in IsaacGym but collapse
entirely under sim-to-sim transfer. In contrast, ResMimic
maintains strong performance with minimal degradation.

ResMimic w/ Virtual Object Controller

ResMimic w/o Virtual Object Controller

Fig. 7: Ablation on virtual object controller.

This demonstrates the necessity of using GMT as a foun-
dation: its large-scale pretraining imbues generalization and
robustness against sim-to-sim gaps.

(Q3) Residual learning outperforms direct fine-tuning.
Finally, we evaluate residual learning against fine-tuning the
GMT policy. While fine-tuning yields slight improvements
over training from scratch, it neither outperforms the base
GMT policy nor approaches the performance of ResMimic
as shown in Table I. A key limitation is that fine-tuning
cannot incorporate additional object observations, since the
GMT policy architecture is restricted to human motion
inputs. Although object-tracking rewards provide some su-
pervision, the lack of explicit object state prevents learning
robust behaviors, particularly under randomized object poses.
Moreover, fine-tuning tends to overwrite the generalization
capability of the GMT policy, leading to instability across
tasks. A comparison between IsaacGym and MuJoCo as
shown in Figure 5 reveals that fine-tuned policies succeed on
task Chair-Lift in IsaacGym but fail to transfer in MuJoCo,
underscoring the superiority of residual learning as a more
generalizable and extensible adaptation strategy.

C. Real-world Evaluation

As shown in Figure 1, we deploy ResMimic on a Unitree
G1 humanoid and demonstrate precise, expressive, robust
whole-body loco-manipulation. ResMimic supports both
blind (without object state input) and non-blind deployment
(with MoCap-based object state input). For simplicity, all
real-world results in Figure 1 are under blind deployment.
• Expressive carrying motions: the robot kneels on one

knee to pick up a box, or carry the box on its back,
highlighting expressive whole-body movement.

• Humanoid–object interaction beyond manipulation: the
robot sits down on a chair and then stands up while
maintaining balance and contact with the environment.

• Heavy payload carrying with whole-body contact: the
robot successfully carries a 4.5 kg box, while the G1’s
wrist payload limit is around 2.5 kg, demonstrating the
necessity of leveraging whole-body contact.

• Generalization to irregular heavy objects: the robot lifts
and carries chairs weighing 4.5 kg and 5.5 kg, showing
instance-level generalization to novel, non-box geometries.
We also conduct a qualitative comparison of ResMimic
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Fig. 8: Ablation on contact reward. Here NCR denotes “No
Contact Reward”, and CR denotes “with Contact Reward”.
Corresponding curves (bottom) quantify torso contact force.

against all baselines in the real world, as shown in Fig. 6. The
results indicate that while the base policy can superficially
mimic human motion, it lacks object awareness—an issue
that becomes even more pronounced when the demonstration
data is imperfect. Training from scratch and finetuning, on
the other hand, fail entirely due to sim-to-real gap.

Finally, we evaluate ResMimic under non-blind deploy-
ment with MoCap-based object state input as shown in
Figure 4. In this setting, the robot demonstrates the ability
to (i) manipulate objects from random initial poses, (ii)
autonomously perform consecutive loco-manipulation tasks,
and (iii) show reactive behavior to external perturbations.

D. Ablation Studies

1) Effect of the Virtual Object Controller: The virtual
object controller stabilizes early-stage training by applying
curriculum-based virtual forces that guide the object toward
its reference trajectory. A qualitative example is shown in
Figure 7. In this task, the reference motions contain im-
perfections, including penetrations between the humanoid’s
hand and the object. The policy initially focuses only on
motion tracking to reach the object, causing the object to be
knocked over, which yields low object rewards and frequent
early terminations. This quickly drives the policy into a local
minimum where the robot retreats rather than engaging with
the object. In contrast, with the virtual force curriculum, the
object remains stabilized during early learning, enabling the
policy to overcome motion-data imperfections and converge
to precise manipulation strategies.

2) Effect of the Contact Reward: The contact reward pro-
vides explicit guidance on leveraging whole-body strategies.
As illustrated in Figure 8, there are two possible ways to
lift the box: (1) relying only on wrists and hands, or (2)
engaging both torso and arm contact as demonstrated by
humans. Without the contact reward, the policy converges
to (1), which may succeed in IsaacGym but fails to transfer

to MuJoCo and the real world. With the contact reward, the
humanoid instead adopts strategy (2), using coordinated torso
and arm contact. This alignment with human demonstrations
results in improved sim-to-sim and sim-to-real transfer, val-
idating the importance of the contact reward.

V. CONCLUSION

This work introduces ResMimic , a two-stage residual
learning framework that enables precise, expressive, and ro-
bust humanoid loco-manipulation. We first pre-train a general
motion-tracking policy on large-scale human motion data,
and then refine it with a task-specific residual policy. Across
extensive experiments, ResMimic delivers substantial gains
in task success, motion fidelity, and training efficiency, and
further demonstrates seamless deployment on a real Unitree
G1 humanoid. These results highlight the transformative
potential of pre-trained policies for humanoid control.
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